St. John's University

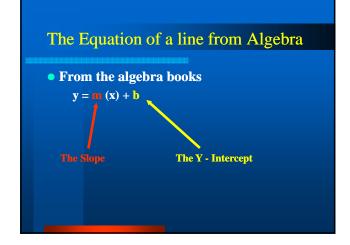
Center for Educational Research Leadership and Accountability

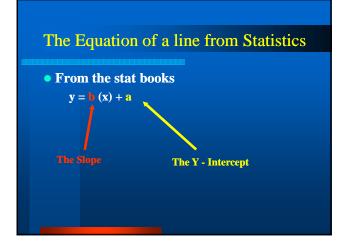
Educational Research and Data Analysis II EDU 7211

Dr. Francesco Ianni

We will learn....

- A little Algebra Review
- The Regression Equation
- Linear Regression
 - The variables are both non nominal
 - One variable is nominal
- SPSS application

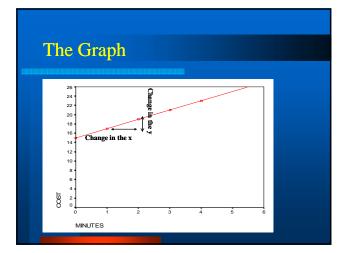

Algebra Review

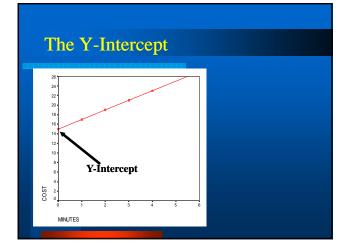

Regression Analysis

1

Algebra Review

- The Equation of a line
- The Slope
- The Y-Intercept
 - Examples
 - Practice
- The Correct Window


The X and the Y variable


- The X variable – Independent variable (Used the most)
- The Y variable – Dependent variable

Example

- Cell phone problem

 2 dollars per minute
 15 dollars monthly fee
 - .
- The equation will be equal to y = 1x + 15
 - **x** = number of minutes
 - $\mathbf{y} = \mathbf{monthly \ cost}$

How do we use the equation of the line?

• Given the equation y = 2x + 15

• We can find

- The monthly cost given a specific number of minutes.
- The number of minutes we can talk given a specific amount of money we are allowed to spend.

A numerical example

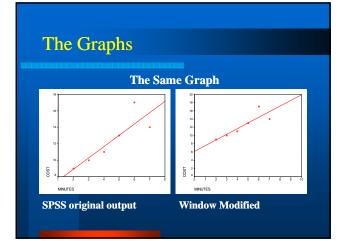
• Given the equation y = 2x + 1

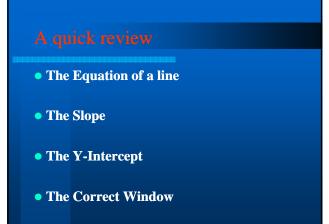
- Find the monthly cost if we use 300 minutes per month on average

- y = 2 (300) + 15 = 615
- We will spend \$615

A numerical example

• Given the equation y = 2x + 15


- Find the number of minutes we will be talking if the monthly cost has to be \$515
 515 = 2x + 15
 515 15 = 2x
 - 500/2 = x
 - **X** = 250
 - We will be talking for 250 minutes


Practice

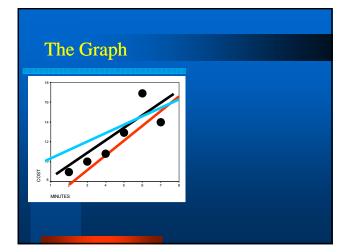
- Given the equation y = 3.6X + 17.2
 - 1. Find the value of y if x = 13.6
 - 2. Find the value of x if y = 234.2
 - 3. Determine the value of the slope and the value of the y intercept

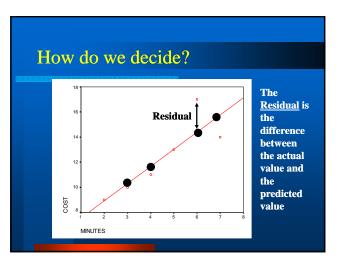
Let's check our answers

- 1. y = 3.6 (13.6) + 17.2y = 66.16
- 2. 234.2 = 3.6 x + 17.2 x = 60.27777
- 3. The slope is equal to 3.6
- 4. The y-intercept is equal to 17.2

The Regression Equation

The Regression Equation

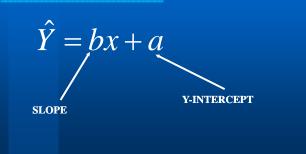

• Based on the algebra review


The Regression Equation

- What's the "best fit" line?
- How do we get the Regression Equation?
- The Regression Equation on SPSS – Both variables <u>non nominal</u>
- The Regression Equation on SPSS – One variable <u>nominal</u>

The Best Fit Line

- Given the following data our goal is to find <u>a line</u> that best fits the points
 X = 2,3,4,5,6,7
 - Y = 9,9,15,9,19,14
- Let's plot the points



How do we decide?

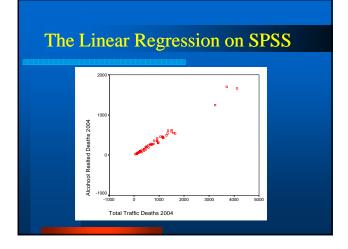
- *Y* = actual value
- \hat{Y} = Expected value
- **Residual** = $Y \hat{Y}$
- The Best Fitting Line is the line that minimizes the sum of the squared differences (residuals)

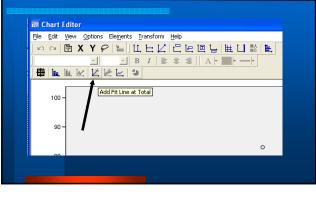
The Regression Equation

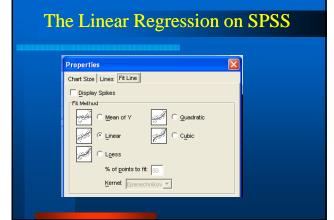
The Linear Regression

The Linear Regression

- Both variables are non nominal
- One variable is <u>nominal</u>

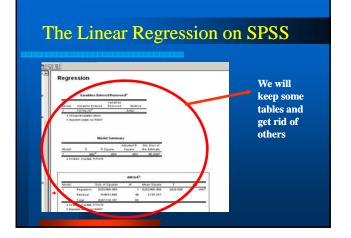

Linear Regression when both variables are non nominal

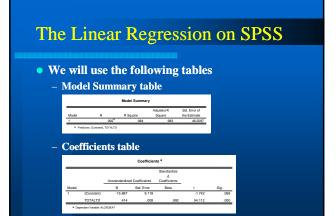

- When Both Variable are Non-Nominal
 - X is the independent
 - Y is the dependent
- Create a scatter plot to look at the data
- Write the equation using SPSS tables


The Linear Regression on SPSS

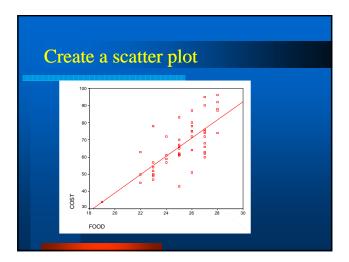
• Using the data SADD [on blackboard]

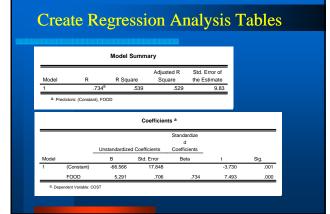
📺 sadd 2	004 - SPSS Data Editor					
File Edit	View Data Transform	Analyze Gr	aphs Utilities	Window He	lp .	
	🛎 🗳 🖻 🖉	1 🔚 😰 🖉	a <u>F</u>	₩	<u>v</u>	
1 : state		Alabama				_
	state	totaltd	alcrdeat	peralcre	var	Γ
1	Alabama	1154.00	432.00	37.00		Г
2	Alaska	101.00	31.00	31.00		Г
3	Arizona	1151.00	446.00	39.00		Г
4	Arkansas	703.00	264.00	38.00		Г
5	California	4120.00	1667.00	40.00		Г

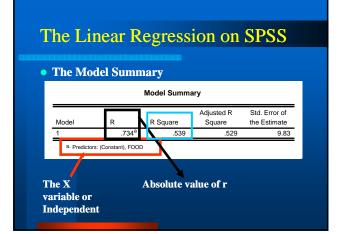


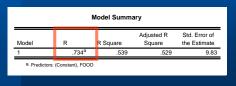

Total Traffic Deaths 2004

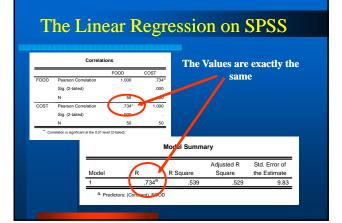
The Linear Regression on SPSS

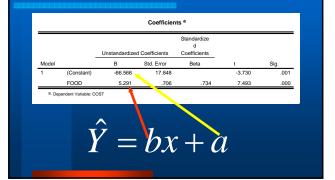

📺 sadd 2	004 - SPSS Data Editor				
File Edit	View Data Transform	Analyze Gr	raphs l	Jtilities	Window Help
🚅 日	a 🔍 🖂 🖷	Reports Descriptiv		ics +	
1. state	state	 Compare General L Correlate 	inear Mo		peralcre var var
1	Alabama	Regressio	n	Þ	Linear
2	Alaska	Loglinear		Þ	Curve Estimation
3	Arizona	Classify		•	Binary Logistic
4	Arkansas	Data Reduction		•	Multinomial Logistic
5	California	Scale		•	Ordinal
6	Colorado	Nonparan	netric Te	sts 🕨	Probit
7	Connecticut	Survival			
8	Delaware	Multiple R	esponse		Nonlinear
9	Dist of Columb	43.00		19.00	Weight Estimation 2-Stage Least Squares
10	Florida	3244.00	124	44.00	2-Stage Least Squares






- Using Zagat let's look at the relationship between food and cost
 - Create a scatter Plot
 - Create Regression Analysis Tables
 - Interpret the results




- R value in the Model Summary Table
 - R is the absolute value of r (correlation coefficient) and represents the simple correlation between Food and Cost.
 - In this case .734 is considered to be very strong.

- R Square in the Model Summary Table
 - The R Square tells us what percentage of the variation in the dependent variable is explained by the independent variable.
 - In this case R Square is .539 which tell us that 53.9% of the variation in Cost can be explained by the variation in Food Rating

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.734		.529	9.83

The Linear Regression on SPSS

• The Equation is

Ŷ= 5.291 X - 66.566

- The Slope value is 5.291
- The Y Intercept is 66.566

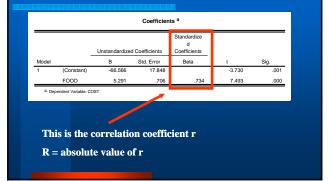
The Linear Regression on SPSS

- Interpreting the Slope (b) when both variables are Non Nominal
 - Positive Slope
 - For every unit increase in X there is a **b** amount increase in the Y

- Negative Slope

• For every unit increase in the X, there is a b amount decrease in the Y

- Interpreting the Y-Intercept when both variables are Non Nominal
 - The Y intercept represents the value of the Y variable when the X = 0
 - It is extremely important to put the significance of the Y- Intercept in the context of the problem.


The Linear Regression on SPSS

- Let's interpret the Slope and the Y-Intercept $\hat{Y} = 5.291 \text{ X} - 66.566$
- Interpretation of the Slope:
 For every unit increase in Food Rating there is an increase in
 Cost of \$5.291
- Interpretation of the Y Intercept:
 - The Y Intercept doesn't make sense in the context of the problem. It is not realistic that the restaurant will give you back \$66.566 if the food rating is 0

The Linear Regression

- Please Remember that:
 - Determining the Value of the Slope or Y- Intercept
 - Interpreting the Slope and the Y- Intercept

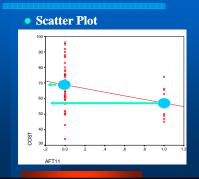
ARE TWO DIFFERENT QUESTIONS

		Unstandardized	Coefficients	d Coefficients		
Model	-	В	Std. Error	Beta	t	Sig.
1	(Constant)	-66.566	17.848		-3.730	.001
	FOOD	5.291	.706	.734	7.493	.000

•The Significance Test is the same as the previous chapters

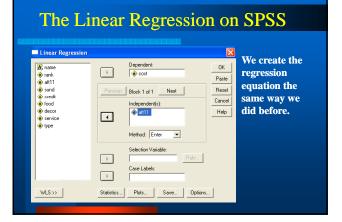
 $\bullet In$ this case since the value is <.01 the result is Statically Significant

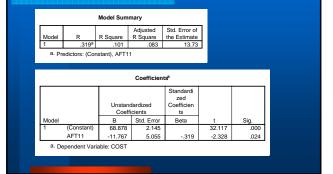
•The probability that these results would happen by chance is less than 1/1000

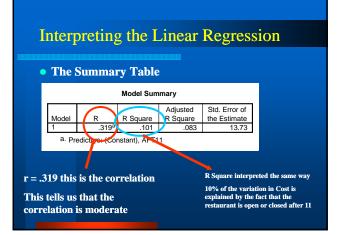

Linear Regression when one variable is nominal

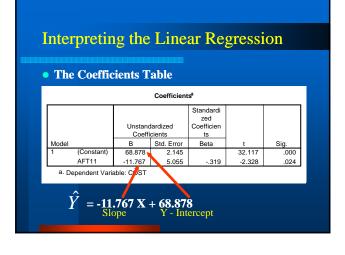
- Determine the values of the categories
- Create a scatter plot to look at the data
- Write the equation using SPSS tables
- Interpret the results

The Linear Regression on SPSS


- Using the Zagat data let's analyze the relationship between
 - Aft11 = Open after 11 o'clock
 - 0 = Restaurant is Closed after 11
 - 1 = Restaurant is Open after 11
 - You obtain this info from *Variable View Window*
 - Cost = Cost of Dinner


The Linear Regression on SPSS




From the scatter plot we noticed that we only have 2 categories.

The restaurants that close after 11 (0) have a higher Cost compared to the ones open.

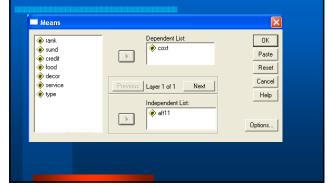
Interpreting the Linear Regression

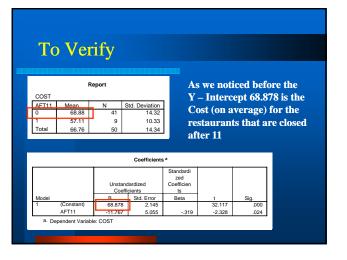
$$\hat{Y} = -11.767 \text{ X} + 68.878$$

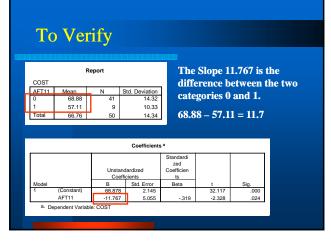
Interpreting the Linear Regression

• In general for the interpretation of the slope when the independent variable is Nominal

Interpreting the Linear Regression


• In general for the interpretation of the Y-Intercept


Interpreting the Linear Regression


- Another way to look at the regression
 - Create a Regression analysis
 - Summary Table
 - Coefficient Table
 - Create Compare Means table
 - Compare the above tables

Compare M	Means
Output1 - SPSS Viewer File Edit View Insert Format	Analyze Graphs Utilities Window Help
	Reports Image: Compare Means Compare Means Means General Linear Model One-Sample T Test Correlate Independent-Samples T Test Loginear One-Way ANOVA Classify Deta Reduction
Title Notes Variables Entered Model Summary	Scale Coefficients ^a Nonparatic Tests Surviva Multiple Response

Compare Means

Conclusion

- Tables are always created the same way regardless of the fact that:
 - Independent Nominal
 - Dependent Non Nominal
 - Independent Non-Nominal
 - Dependent Non-Nominal

Slope Interpretation


- If Independent is <u>Non Nominal</u>
 - The Slope represents the rate of change.
 - For every unit increase in the independent variable there is b amount increase or decrease (depending if b is positive or negative) in the dependent variable.
- If Independent is Nominal
 - The Slope represents the difference on average between the categories

Y-Intercept Interpretation

- If Independent is Non Nominal
 - The Y- Intercept represents the value of the dependent variable when the independent is 0
- If Independent is Nominal
 - The Y intercept doesn't have any meaning in the problem if there is no category labeled X = 0
 - If there is a category labeled 0 than the Y intercept represents the value of that category

SPSS Applications

- The analysis
 - Create a scatter plot
 - Do a mental estimation of slope and Y Intercept
 - Run a linear regression analysis
 - Interpret the tables
 - Make predictions if the model is reliable
 - Write conclusions

